
NEXTSTEP In Focus, Summer 1993 (Volume 3, Issue 3).
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

The NetInfo Lookup ServerÐlookupd
Alan M. Marcum

Relatively few processes communicate directly with NetInfo. Yet, many
processes need information that resides in NetInfo. How do these
processes get that information? They use an intermediary: lookupd.
This article explains what lookupd is and what it does, and gives you
some tips on spotting and fixing problems that involve it.

WHAT IS LOOKUPD?
lookupd is a daemon that simplifies the tasks of the UNIX library routines
that need system and network administration information. These
routines, such as getpwuid(), gethostbyname(), and getgrent(), are
principally part of the C library (also known as libc). They access
information like user names, computer addresses, and group IDs.
lookupd gets information from NetInfo, the DNS, NIS, and the UNIX
system files. (The UNIX system files are actually accessed as part of
consulting NIS.) It uses Mach messages and SunRPCs to provide
information to callers, usually libc routines.
NeXT created lookupd to avoid rewriting all the libc routines any time a
new information service is added. If, for example, we wanted client
processes to get network administration information from a relational
database, we could modify lookupd so it referenced the information in
the database. This would be easier than modifying all the appropriate libc
routines to give them relational database access.

In addition to providing a centralized data access service, lookupd also
caches some information. This caching improves system responsiveness
and decreases network traffic.
Figure 1 shows how lookupd is used. Most client processes that need
information get it through the libc routines. Those routines call lookupd,
which gets information from NetInfo, the DNS, NIS, and (through NIS) the
UNIX system files. Note, though, that lookupd doesn't prevent some
client processes from accessing the information sources directly.
Furthermore, even though most access to lookupd is through libc, clients
can also invoke lookupd's services directly.

Fig1_Lookup_4Sources.eps ¬

Figure 1: Clients get NetInfo, DNS, and NIS information directly or
through libc and lookupd.

In this figure, the first client process could be one like sendmail.
sendmail calls libc to resolve host names, NetInfo to get configuration
information, and the DNS to look up MX records. It also consults NIS in
response to NIS map access directives in its configuration file.
The last process in the figure might be one like    loginwindow, which
uses libc to do things    like look up user names. loginwindow also
communicates directly with lookupd for cache management.
When searching for information, lookupd consults its information sources
in the following order:
1. lookupd's cache
2. The NetInfo domain hierarchy
3. The DNS, if appropriate
4. NIS
This search order applies in all of NeXT's releases through NEXTSTEP 3.1.
To find out about the DNS see Albitz and Liu 1992, and Nemeth, Snyder,

and Seebass 1989; to find out about NIS see Nemeth, Snyder, and
Seebass 1989, and Stern 1991.

LOOKUPD CACHING
There are various types of lookupd caches, and each type is flushed and
refreshed differently. The following sections provide details.

Password entries cache

One of the caches maintained by lookupd holds the information used by
the getpwent() library routine. This routine lists the users known to the
system (see Computer Systems Research Group 1986 and the UNIX
manual pages). lookupd can optionally cache the information it provides
to getpwent(). The cache is enabled by default.
lookupd uses a ªlazy refreshº on this cache. By default, lookupd loads
the cache when it starts, normally at boot time. It then refreshes the
cache only if the cache is referenced. At regular intervals, lookupd
checks to see whether the cache has been referenced, and reloads it if it
has. In addition, if the cache is referenced after a periodic check,
lookupd sends the old data to the caller, then refreshes the cache. (See
the lookupd(8) UNIX manual page.)
To gain some perspective about this cache, consider that NEXTSTEP uses
getpwent() only to complete a partial user name. For example, you can
invoke this function in Workspace Manager's Finder by typing ~ followed
by a partial user name, and pressing the Escape key. For example, if
smarco is a user name, type ª~smarº, then press Escape. The Finder
completes the name for you if the prefix you supplied is unique.

Logged-in user cache

The user information for the currently logged-in user and the root user
are cached when someone logs in through loginwindow. lookupd
refreshes this cache every 20 minutes and whenever the logged-in user

changes his or her password. It clears the cache when the user logs out.

Local host information

The host informationÐhost name and Internet addressÐfor the local
computer are cached when lookupd starts. If these change, lookupd
must be restarted, typically by rebooting the computer.

Printers

Information regarding available network printers is also cached by
lookupd. Each time the printer database is accessed through lookupd,
lookupd verifies the validity of the cache by comparing the current
checksums of the source databases with the checksums from when the
cache was last loaded. If the cache is out of date, lookupd reloads it and
sends the new data to the caller. If the cache is current, lookupd just
sends the data from the cache.

UNIX Groups

The cache for UNIX groups is maintained and consulted just like that for
printers. It's referenced by the getgrent() library routine, but not by
getgrnam() or getgrgid().

Other hosts

lookupd maintains a one-record cache for information about computers
other than the local computer. The cache contains the most recently
referenced host name and Internet address. lookupd accesses the cache
in response to calls to gethostbyname(), but not for calls to
gethostbyaddr().

Mount points

The cache for mount pointsÐlocations for imported file systemsÐis like
the cache for printers. It's accessed for calls to getmntent().

LOOKING IT UP WITH LOOKUPD
Now let's examine what happens when an application makes a call to a
library routine that provides system administration information. For this
example, assume the application calls gethostbyname() to get
information about a particular computer. The remote computer is
Tute.EDU and is outside Rhino Aviation's network.
First, the application invokes gethostbyname(). This executes code in libc;
the libc code checks to see if NetInfo is running. It is, so the libc code
sends a Mach message to lookupd, requesting that a gethostbyname()
operation be performed.
When it receives the Mach message, lookupd first checks to see if the
request is for information about the local computer. It isn't, so lookupd
then checks to see if the last host name referenced was Tute.EDU. If it
was, lookupd would return the information from the cache. For this
example, though, let's assume some other computer was referenced last.
Next lookupd consults NetInfo to get the information. This results in an
NI_LOOKUPREAD SunRPC message to the local NetInfo serverÐnetinfod
local. Since the information isn't in NetInfo, this call returns an error and
lookupd repeats the process, ascending the NetInfo domain hierarchy.
This may require locating an appropriate NetInfo server, and so could
require connecting or binding. (See ªNetInfo Binding and Connecting.º)
Since the information isn't in NetInfo and the application process is
requesting machine-related information, eventually lookupd consults the
DNS, using the normal resolver library routines. In this example, it finds
the information in the DNS. It then returns the host information for
Tute.EDU, using a Mach message, to the gethostbyname() libc routine.
The libc routine then returns the information to the client application.
If the information hadn't been available from the DNS, then lookupd
could have checked NIS, using the normal NIS semantics. At Rhino,
though, NIS isn't used, so lookupd always stops with the DNS.

MANAGING LOOKUPD
Ordinarily, you may not have to deal with lookupd directly, so you don't
need to do anything to manage it. However, if you want to know what
lookupd is doing over time, it can log all requests it handles. You can
also restart it if it's running into problems or if you need to refresh caches
or tallies. The following sections explain how to work with lookupd.

Logging lookupd requests

Beginning in NEXTSTEP Release 3.0, lookupd can log information about
requests it receives. You can set the logging option for lookupd in the
system startup script /etc/rc. Logging is described fully in the UNIX
manual pages under lookupd(8).
For example, the arguments -L file cause lookupd to log information
about requests it receives to the specified file. Logged information
includes the called procedure, the number of calls to the procedure since
lookupd started, the time required to process this request, and the total
time consumed by all instances of this type of request. (Times are in
microseconds.) When appropriate, the argument to the call is also logged,
and the argument is prefixed with an asterisk if the data was retrieved
from the cache. Figure 2 shows an example of lookupd logging output.
getservbyname Ncalls: 1 Elapsed: 78 Total time: 78
gethostbyname (rhino) Ncalls: 1 Elapsed: 32 Total time: 32
getservbyname (ntp) Ncalls: 2 Elapsed: 108 Total time: 186
getmntent Ncalls: 1 Elapsed: 3384 Total time: 3384
gethostbyname (sabre) Ncalls: 2 Elapsed: 18 Total time: 50
gethostbyname (ranger) Ncalls: 3 Elapsed: 51 Total time: 101
gethostbyname (*ranger) Ncalls: 4 Elapsed: 0 Total time: 101
setpwent Ncalls: 1 Elapsed: 24 Total time: 24
getpwnam (smarco) Ncalls: 5 Elapsed: 28 Total time: 46
setloginuser (672) Ncalls: 1 Elapsed: 64 Total time: 64
getpwnam (*smarco) Ncalls: 6 Elapsed: 1 Total time: 47
getmntent (*) Ncalls: 3 Elapsed: 39 Total time: 3461
gethostbyname (ranger) Ncalls: 5 Elapsed: 38 Total time: 406
getpwnam (*smarco) Ncalls: 7 Elapsed: 0 Total time: 47

getpwuid (*67) Ncalls: 8 Elapsed: 1 Total time: 27
initgroups (smarco) Ncalls: 1 Elapsed: 239 Total time: 239
getgrent Ncalls: 1 Elapsed: 1407 Total time: 1407
getpwuid (*0) Ncalls: 9 Elapsed: 0 Total time: 41
getpwnam (*root) Ncalls: 8 Elapsed: 0 Total time: 353
gethostbyaddr Ncalls: 1 Elapsed: 32 Total time: 32
getpwuid (22) Ncalls: 10 Elapsed: 27 Total time: 68
gethostbyaddr Ncalls: 2 Elapsed: 12 Total time: 44
getservbyport Ncalls: 1 Elapsed: 49 Total time: 49

Figure 2: Logged information about lookupd

Note that since lookupd is invoked by /etc/rc at system boot time, you
have to modify /etc/rc and restart the system to enable logging. You
can't turn logging on and off dynamically in either NEXTSTEP Release 3.0
or Release 3.1.

Restarting lookupd

Sometimes, you might want to restart lookupd. For example, you might
want to force a cache to refresh, change the NetInfo servers being used,
or reset the totals reported by the logging feature. You restart a lookupd
daemon by sending it a ªhang-upº signal, also called a SIGHUP.
To do this, first find the lookupd process ID number, using ps for
example. Then, run the following command as root, substituting the
process ID number for pid:
kill -HUP pid

This kills and automatically restarts lookupd.
If you were instead to try to restart lookupd by terminating it and
rerunning the program, your computer would hang, because the library
functions would be unable to contact the new instance. (If you ever find
yourself in this state, reboot the computer.)
Note: The document references in this and other articles in this issue
refer to the books and articles listed in ªNEXTSTEP Networking

References.º

